Eigenvalue bounds of the shift-splitting preconditioned singular nonsymmetric saddle-point matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Estimates for Preconditioned Saddle Point Matrices

New eigenvalue bounds for symmetric matrices of saddle point form are derived and applied for preconditioned versions of the matrices. The preconditioners enable efficient iterative solution of the corresponding linear systems with, for some important applications, an optimal order of computational complexity.

متن کامل

On eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices

This paper is devoted to the analysis of the eigenvalue distribution of two classes of block preconditioners for the generalized saddle point problem. Most of the bounds developed improve those appeared in previously published works. Numerical results onto a realistic test problem give evidence of the effectiveness of the estimates on the spectrum of preconditioned matrices. Copyright © 2011 Jo...

متن کامل

On the eigenvalues and eigenvectors of nonsymmetric saddle point matrices preconditioned by block triangular matrices

Block lower triangular and block upper triangular matrices are popular preconditioners for nonsymmetric saddle point matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned systems are related. Nonsingular saddle point matrices of the form

متن کامل

A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems

In this paper, we present an effective preconditioning technique for solving nonsymmetric saddle-point problems. In particular, we consider those saddlepoint problems that arise in the numerical simulation of particulate flows—flow of solid particles in incompressible fluids, using mixed finite element discretization of the Navier–Stokes equations. These indefinite linear systems are solved usi...

متن کامل

A note on eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices

where A is symmetric positive definite (SPD), C is symmetric semi-positive definite, and B is of full rank. System of the form (1) arises in a variety of scientific and engineering applications, such as constrained optimization, least squares. We refer the reader to [1] for a more detailed list of applications and numerical solution techniques of (1). Recently, drawing on previous works: [2, 3]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2016

ISSN: 1029-242X

DOI: 10.1186/s13660-016-1193-y